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SINCE the appearance of their original paper,1 the au-
thors have received several very cogent questions pertain-
ing to the practical importance and physical significance
of the theoretical aeroelastic "instabilities" discussed in
that paper. In addition to highlighting the aeroelastic as-
pects of tailless-aircraft design, Ref. 1 intended to de-
scribe, in a simplified fashion, some phenomena which
may be peculiar either to flying wings or to oblique
winged aircraft.2 These phenomena included the role of
aileron controls in aeroelastic behavior and the influence
of asymmetrical sweep on the aeroelastic behavior of
oblique wings. The purpose of the present Note is to sum-
marize an approach which the authors believe to be help-
ful in dealing with the issues which have been raised.

It is useful to recall Ziegler's discovery3 that stability
boundaries for nonconservative linear systems (e.g., the
cantilever beam with a follower force load at the free end)
are best determined from a study of the time dependent
behavior of the free motion of the system. This point is
exemplified by a reanalysis of the torsional effects on a
uniform property straight wing, rolling about a pin as
shown in Figs. 5 and 6 of Ref. 1. Notation will follow that
used in the antecedent paper.

Consider initially the roll dynamics of the wing with
undeflected aileron, but assume that oscillation periods
are sufficiently long to permit the quasi-static treatment
of wing torsional deformation; in this case, the 0 term is
negligible. If the line of centers of mass coincides with the
elastic axis, the torsional deformation equation may be
expressed (in nondimensional form) as

The partial derivative reflects the fact that 9 = 6(77,7),
where r is a nondimensional time variable

Vt_
I (2)

In preference to a static constraint of zero rolling moment,
let Eq. (1) be solved simultaneously with the roll dynam-
ics equation. After nondimensionalization and the inclu-
sion of the twist contribution to the rolling moment, the
equation for roll moment dynamic equilibrium reads

theHere ix = Ix/ p^ cl4 is a dimensionless form of Ix
mass moment of inertia of the wing about the pin.
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With cantilever boundary conditions on twist and an
initial rolling velocity

P0=P(Q) (4)
Eqs. (1-3) are easily seen to yield a first-order system in
time. The solution

p(r) =p0 j exp - k - (5)

is useful for interpreting the significance (or insignifi-
cance) of the roots of the characteristic equation, Eq. (12),
in Ref. 1. To this end, Fig. 1 plots the dynamic pressure
parameter 2k fir vs the "time constant" TO, where

T = - k -k)
is associated with roll response. From this presentation it
immediately becomes clear that any instability due to an
eigenvalue of the system described by Eqs. (1-3) at tan k
= k is masked by what happens at the much lower dy-
namic pressure eigenvalue k = ir/2. Ordinary cantilever
torsional divergence is the aeroelastic threat to this wing.

Next, let us consider what happens if the full span ail-
erons are applied in a wing-leveling mode. For instance,
one might select the elementary control law

where
(6)

(7)

is the bank angle and K(K > 0) is a gain constant. (It
must be remarked that no essential change in aeroelastic
behavior occurs if Eq. 6 is replaced by some realistic dy-
namic control law, so long as the proportionality of 50 to 0
is preserved as the frequency goes to zero.)

Under these circumstances, the torsional deformation
differential equation is merely modified by some aileron
terms like those in Eq. (13) of Ref. 1. The solution to this
equation has the form of Eq. (19) of Ref. 1, with the term
—plrj/V appended. When this result and the control law
given in Eq. (6) are added to the roll dynamic equilibrium
equation, the result is

(1) _d_ (pi

The bank angle is then found to obey the following sec-
ond-order differential equation

Zk/TT = 2.86 -
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Fig. 1 Variation of the time constant TO with dynamic pres-
sure parameter 2k / i r .
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The transient solutions of Eq. (9) behave in a manner
that can be inferred from the variation with k of the di-
mensionless "damping coefficient" and "spring constant."
By analogy with Eq. (5), the damping coefficient under-
goes a sign change at k = tan k. However, this is domi-
nated in practice by the singularity due to torsional diver-
gence at k = 7T/2. Perhaps more interesting, however, is
the changeover from positive to negative "spring con-
stant" as k increases. When the gain K is large enough,
this change in sign signals an unstable passage from
damped oscillatory to exponentially divergent roll pertur-
bation. By reference to pp. 300-310 of Ref. 4, the stability
boundary is found to coincide with the dynamic pressure
for aileron reversal, at which point the roll -controllability
of the system vanishes. Whenever the group of terms
[ci + CM c/e] is negative (corresponding to / < 0 in Kef. 1)
this phenomenon appears below the torsional divergence
Q-

For a representative set of system parameters, with K
chosen large enough to make the rigid wing roll eigenval-
ues oscillatory, Fig. 2 displays how the dimensionless nat-
ural frequency and critical damping ratio from Eq. (9)
vary with k.

Turning to the case of an oblique wing free to roll about
an axis parallel to the airstream, we may treat the dy-
namic behavior in a manner similar to that just described.
As in Ref. 1, the aeroelastic analysis is simplified by the
assumption that the elastic axis and line of aerodynamic
centers coincide; in addition, the wing is uncambered.
With these assumptions, only bending flexibility is impor-
tant. Because the qualitative behavior of the configuration
is to be examined, strip theory aerodynamics again will be
used, despite some well-known shortcomings of the theory
when used for swept wing airload prediction or for predic-
tion of loading caused by aileron deflection .

If chordwise cross-sections are examined, the nondimen-
sional governing differential equation for the bending de-
formation of a constant property wing with full -span ailer-
ons, rolling on a pin, is found to be

- />gpCOsAJ7]:=0 (10)

where A = qccia /3cos2A/E7, w(rj,t) is the elastic deflection
of the wing and m(rj) is the wing mass per unit length.
Once again, the oscillation periods are assumed sufficient-
ly large so that the w term can be ignored. We cannot ig-
nore the constant mass distribution 771(77) without intro-
ducting a significant error, as will be shown later.

Equation (10) is to be solved simultaneously with the
oblique wing roll dynamics equation. This latter equation
reads

&+1 «
dt 3y V ~ 7 (11)

where 7 = qccia /2cos3A//^; Ix is the mass moment of iner-
tia of the wing about the roll axis; and the ailerons are de-
flected asymmetrically so that

6(7?) =
60 0< 77 < 1

-50 -1^ 7] < 0

To make the problem more realistic, it is further as-
sumed that part of the moment of inertia is concentrated
on the roll axis, as would be the case if a fuselage were
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Fig. 2 Typical variation of undamped dimensionless natural
frequency and critical damping ratio with dynamic pressure

parameter 2fc/7r; / = -1.0, K = a0
2/l2cidix.

present. With this assumption, Ix = If + Iw, where If is
the roll mass moment of inertia of the fuselage while Iw is
the wing roll mass moment of inertia; Iw is found, by sim-
ple integration, to be

Iw = (2/3)m/3 cos2A (12)

The exact solution to Eq. (10) may be found if the wing
elastic deformation derivative dw/drj is assumed to be zero
at the roll axis attachment point. This solution has a form
similar to that given in Ref. 4, pp. 312-314. For the sake
of brevity, the analytic solution and the related integrand
in Eq. (11) are not reproduced here.

If, as in Eq. (6), 50 is assumed proportional to the bank
angle (/>, Eq. (11) may be written as

The symbols D and F represent terms which arise from
the combination of like terms in Eq. (11) after the re-
quired integration has been performed. Both D and F are
exponential functions of the aeroelastic parameter A tanA .
In addition, D is also a function of the ratio IW/IX. The
behavior of the damping factor D is shown in Fig. 3,
where IW/IX has the value 0.50.
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Fig. 3 Variation of the damping factor D with the nondimen-
sional dynamic pressure parameter q*; qr* = Q/QDIV; <jfoiv =
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Fig. 4 The effect of the mass moment of inertia ratio Iw/Ix on
the roll instability boundary for the oblique wing.

In Fig. 3, D is plotted against the variable <?*. <?* repre-
sents the dynamic pressure q divided by the divergence
dynamic pressure of a similar clamped sweptforward wing
which does not have freedom to roll. If the gain K is large
enough, the temporal behavior of the bank angle is that of
a damped oscillation until the value q* = 1.46. At that
point the damping factor D changes sign (as does F), with
the result that the roll motion becomes exponentially di-
vergent. This critical value of q* is greater than unity,
signifying that this dynamic instability occurs at a value
above the clamped divergence speed.

Figure 4 illustrates the effect of the ratio IW/IX on the
dynamic instability. From this figure two things are readi-
ly apparent. If all the mass is concentrated in the fuselage
(Iw = 0), the dynamic instability occurs at the clamped
divergence speed. On the other hand, if all the mass is in
the wing (7^ = Ix) no dynamic instability can occur in
this problem. It should be remarked also that, at a fixed
value of q, the sweeping of the wing causes C/DIV to de-
crease (with the resultant increase in q*) and also causes
Iw/Ix to decrease.

The variable F is equal to zero at XtanA = 27.45.
This behavior is related to a phenomenon which was re-
ferred to as "wing-aileron divergence" in Ref. 1. When F
is equal to zero, the solution to Eq. (13) takes on the form

Beat (14)

where A and B are arbitrary constants and a is a positive
constant. If B is zero, there is no roll velocity and the re-
sult corresponds to the case of an oblique wing which uses
asymmetrical aileron deflection to maintain a constant
bank angle. But, as q (or X tanA) increases, the ailerons
lose their effectiveness and additional aileron input is nec-
essary to preserve static equilibrium. Finally, near X tanA
= 27.45 the ailerons must be deflected to large angles to
preserve static equilibrium. These large aileron deflections
induce large bending deformation, thus the term "wing-
aileron divergence."

It has been pointed out by Nisbet5 that, in fact, the
theoretical value X tanA = 27.45 must correspond to the
aileron control reversal point for the oblique wing. This
result was unanticipated by the first author at the time
Ref. 1 was published, since an aileron on a clamped
sweptforward wing (considering bending deformation
only) will not reverse. The correctness of Nisbet's observa-
tion is borne out by a conventional analysis of oblique
wing aileron effectiveness.

Conclusions

This Note has examined the roll dynamic behavior of
the three example problems considered in Ref. 1. The re-
sults obtained in Ref. 1 through the use of static equilibri-
um analysis are seen to be related to the roll dynamic sta-
bility behavior of these configurations. The authors em-
phasized in Ref. 1 that the static aeroelastic "instabili-
ties" uncovered in that paper "in actuality lead, not to
structural failures, but to large amounts of twist and
bending." These static "instabilities" are, when seen from
a dynamic response viewpoint, seen to be caused by con-
trol ineffectiveness.

The idealized dynamic analysis of the oblique wing, free
to roll, has led to results which are extremely interesting.
The analysis shows that the static divergence instability
which occurs for symmetrical or clamped sweptforward
wings is modified by roll freedom. The instability found in
this highly idealized analysis is still of an aperiodic na-
ture, but at a speed above the conventional divergence
speed. The magnitude of this difference is seen to be a
function of the roll mass moment of inertia ratio IW/IX and
may be quite significant.

Although the present analysis stems from a greatly sim-
plified and somewhat different set of assumptions (nota-
bly that the ailerons furnish a restoring force), its basic
results tend to agree with the results in Ref. 2. In Ref. 2 a
flutter (i.e., divergent oscillation), instability slightly
above the cantilever divergence speed is shown to exist if
the aircraft is given roll freedom. Although the analysis in
the present study and in Ref. 2 are different in many re-
spects, they both show a significant upward modification
of the speed at which aeroelastic instability occurs if roll
freedom is permitted. Further studies are currently under-
way to determine the effect of the addition of pitch and
plunge freedom to a realistic aeroelastic model for which
three-dimensional unsteady aerodynamic theory, rather
than strip theory, is used. The results of this further anal-
ysis should shed additional light on this fascinating prob-
lem.
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